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1. Overview

This module is intended as a stand-alone component of a second,
project-based course in computational science. The students should
have had a course in diff erential equations, and an interest in physics,
astronomy or mathematics. It assumes some profi ciency with the sym-
bolic, visualization and programming capabilities of Maple, as might
be taught in a fi rst course in computational science. The module is
implemented in its entirety using Maple.

The learning goals are as follows:

• To review the classical Newtonian theory of orbits.
• To solve, visualize and analyze the Newtonian diff erential equa-

tion whose solutions are Keplerian orbits.
• To modify the Newtonian diff erential equation to model General

Relativity (GR) eff ects (post-Newtonian correction).
• To introduce the general formalism for GR.
• To see how the modifi ed Newtonian diff erential equation is con-

sistent with this formalism when we use the exact solution to
Einstein’s fi eld equations called the Schwarzschild solution.

• To apply the formalism to visualize and analyze orbits around
a Kerr (rotating) black hole.

2. Introd u c tion to th e P rob lem

The fi rst comprehensive theory of gravitational orbits was developed
by Newton. The orbits, or gravitational trajectories, are conic sec-
tions and arise as solutions to a second order linear diff erential equa-
tion. Newton assumed that time was absolute and the universe was
described by Euclidean geometry. After Newton, Riemann developed
the mathematics that describes the geometry of curved spaces [Spi-
vak, 1979]. Einstein adapted this mathematics to describe gravity as
the curvature of four-dimensional spacetime [Pais, 1982]. One early
success was the application of this theory to explain the advance of
the perihelion of Mercury. Soon afterwards, Schwarzschild found the
fi rst exact solution to Einstein’s fi eld equations. Subsequently this so-
lution and others were interpreted as modeling the gravitational fi eld
surrounding a black hole.

3. S ta tem ent of th e P rob lem

In this module you will learn how to obtain gravitational trajec-
tories for Newtonian and General Relativistic physics as solutions to
diff erential equations. F or Newtonian physics, the relevant diff erential
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equation

(1)
d2u

dθ 2
+ u = p

arises from the behavior of a central force. In equation (1), u = 1/ r
where r is the distance from the central body to the orbiting particle,
and p is a constant that can be expressed in terms of the U niversal
Constant of Gravitation G, the angular momentum of the orbiting
particle, and the masses of the central body and the orbiting particle.

For GR, the relevant system of differential equations looks like

(2)
d2xβ

dτ 2
+

4
∑

σ= 1

4
∑

α= 1

Γβ

σα

dxσ

dτ

dxα

dτ
= 0, 1 ≤ β ≤ 4

and arises from the specification of geodesics, which are a generaliza-
tion of the notion of the “ shortest distance between two points” in a
curved geometry. In equation (2), x1, x2, x3, x4 are spacetime coordi-

nates which depend on the parameter τ and the quantities Γβ

σα are
complicated functions of these coordinates.

W e note that equation (1) is a single ordinary linear differential equa-
tion whereas equation (2) is a system of four ordinary non-linear dif-
ferential equations.

Y ou will be introduced to the standard notation and formalism for
the GR equations and there you will find the definition of Γβ

σα in equa-
tion (2). W e will also examine solutions to the GR equation (2) specif-
ically for the Schwarzschild and Kerr solutions.

4. Background Information

4.1. Classical Theory of Orbits. The Newtonian gravitational force
between two objects of masses m1 and m2, separated by a distance r
is given by

(3) F = G
m1m2

r2

where G is the U niversal Constant of Gravitation. A straightforward
application of Newtonian mechanics starting with this equation yields
the differential equations

d2r

dt2
− r

(

dθ

dt

)2

= −
M

r2
(4)

d

dt

(

r2
dθ

dt

)

= 0(5)
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where M = G(m1 + m2). Many problems in classical physics have
m1 > > m2, so we can say that M ≈ Gm1. Using equation (5) we have

(6) r2
dθ

dt
= h

where h is the angular momentum per unit mass. Combining this with
equation (4) we obtain

(7)
d2r

dt2
−

h2

r3
= −

M

r2
.

It is common in classical orbital mechanics [Fowles and Cassiday, 2005]
to make the substitution u = r−1. This substitution, together with
equation (6), gives us

dr

dt
= −u−2

du

dt
= −u−2

du

dθ

dθ

dt
= −h

du

dθ
.

D ifferentiating, we get

d2r

dt2
= −h

d

dθ

(

du

dθ

)

dθ

dt
= −h2u2

d2u

dθ2
.

Therefore equation (7) becomes

(8)
d2u

dθ2
+ u = p

where

(9) p =
M

h2
.

We might think of this differential equation as having the form of a
“simple harmonic oscillator.” As such the equation is easy to solve and
analysis of its solutions is straightforward. We find that the trajectories
r(θ) are conic sections with the central mass M at a focus.

4.2. A Post Newtonian Correction. In 1915, Einstein was devel-
oping his General Theory of Relativity and was trying to use his theory
[Pais, 1982] to explain an anomaly in the orbit of Mercury termed the
“perihelion precession.” One approach to explaining this anomaly is
to search for a modification of equation (8) that somehow refl ects cor-
rections to Newtonian gravity. We might be led [D anby, 1988] to the
following equation

(10)
d2u

dθ2
+ u = p + εu2

where ε is presumably small and to be determined. It is not diffi cult to
numerically analyze the solutions of this differential equation. We find,
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Figure 1. A trajectory of equation (10) which corresponds
to the fam ous “ adv ance of the perihelion” of an elliptical

orb it.

for example, that for certain values of the parameters, the trajectories
resemble an ellipse that “precesses” around. See Figure [1].

In order to symbolically represent the solution to equation (10), we
consider the following form:

(

du

dθ

)2

= A + Bu + C u2 + Du3.

By differentiating this form, we obtain

d2u

dθ2
=

B

2
+ C u +

3D

2
u2.

Thus we see that equation (10) is equivalent to

(11)

(

du

dθ

)2

= A + 2pu − u2 +
2ε

3
u3

where A is related to an initial value of du/dθ, but 3D = 2ε is undeter-
mined. This allows us to represent the solution u(θ) of equation (10)
as the inverse function of the function θ(u) defined by

(12) θ =

∫

1
√

A + 2pu − u2 +
2εu3

3

du.

We stress this point: although equation (10) has trajectories that
accurately model the anomaly in the orbit of Mercury that Einstein was
trying explain in 1915, the assumption of the form of equation (10) as a
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modification of equation (8) is ad hoc and does not give any theoretical
explanation of the value of ε.

4.3. Theoretical Context of General Relativity. General relativ-
ity is a refinement of Newton’s classical theory of gravitation. In rela-
tivity we replace the three-dimensional space continuum of Newtonian
physics with a four-dimensional spacetime continuum. Instead of “lo-
cations” we work with “events” (x, y , z , t). This notational choice sug-
gests Cartesian coordinates and time, but there is nothing special about
these coordinates. We may change coordinates, or equivalently, we can
expect that different observers will use different coordinates to describe
the same abstract collection of events. Thus instead of (x, y , z , t) we
are obligated to use a general coordinate notation (x1, x2, x3, x4).

An important extra feature of spacetime is the presence of what is
called a L orentz metric.

At the infinitesimal level, the metric provides a way to ascribe mean-
ing to the “separation” between two infinitesimally separated events.
Famous notation for the metric at the infinitesimal level is

(13) ds2 =
4

∑

µ,ν=1

gµνdxµdxν

where the gµν are functions of x1, x2, x3, x4. Using the so-called sum-

mation conv ention of Einstein, we suppress the summation notation
and understand from the context of repeated indices that a summation
is present. Thus we usually write

ds2 = gµνdxµdxν .

When we can take coordinates (x1, x2, x3, x4) = (x, y , z , t) for which
the metric is of the form

ds2 = −(dx2 + dy 2 + dz 2) + dt2,

then we are in the case of special relativ ity, and the spacetime is said
to be M ink owsk i spacetime.

To understand separation of events in spacetime at a “global” level
as opposed to an infinitesimal level, we must consider a path γ in
spacetime connecting two events

xa = (x1

a, x
2

a, x
3

a, x
4

a) and
xb = (x1

b , x
2

b , x
3

b , x
4

b).
Thus γ(τ) = (x1(τ), x2(τ), x3(τ), x4(τ)) for τ0 ≤ τ ≤ τ1 where
γ(τ0) = xa and γ(τ1) = xb. Then the separation ∆ s|b

a
between these

events is
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∆s|b
a

=

∫

γ

ds =

∫ τ1

τ0

√

gµν(x1(τ), x2(τ), x3(τ), x4(τ))
dxµ(τ)

dτ

dxν(τ)

dτ
dτ.

It should be noticed that the separation between two events a and b

depends not only on the two events a and b, but also on the particular
path between the two events.

An important feature of a metric gµν is its Riemannian curvature

tensor Riklm. This is a complicated expression involving the derivatives
of the functions gµν :

(14)
Riklm =

1

2

(

∂2gim

∂xk∂xl
+

∂2gkl

∂xi∂xm
−

∂2gil

∂xk∂xm
−

∂2gkm

∂xi∂xl

)

+gnp

(

Γn
klΓ

p
im − Γn

kmΓp
il

)

where

(15) Γa
bc =

1

2
gai

(

∂gib

∂xc
+

∂gic

∂xb
−

∂gbc

∂xi

)

and where (gµν) is the inverse of the matrix (gµν). The quantities Γa
bc

in equation (15) are often called the C hristoff el symbols or connection

coeffi cients of g.
The associated Ricci curvature tensor Rµν

is given by Rµν = glmRlµmν , or more explicitly, by

(16) Rµν =
∂Γi

µν

∂xi
−

∂Γi
µi

∂xν
+ Γi

µνΓ
j
ij − Γj

µiΓ
i
νj.

For parts of space devoid of matter or energy, Einstein’s hypothesis
is that the Ricci curvature of the metric must be zero. Close
inspection reveals that Rµν = Rνµ, and thus solving the equations
Rµν = 0 amounts to the difficult problem of solving ten nonlinear
partial differential equations for the ten unknown functions gµν , where
1 ≤ µ ≤ ν ≤ 4.

Einstein hypothesized that once a metric is found whose Ricci curva-
ture is zero, then the trajectories of both particles and light are curves
called g eodesics. Equations for geodesics amount to four ordinary dif-
ferential equations for the four unknown functions xi(τ):

(17)
d2xβ

dτ 2
+ Γβ

σα

dxσ

dτ

dxα

dτ
= 0.

These equations are the same as equation (2) except that we use the
summation notion alluded to after equation (13). Notice that for the
special case of Minkowski spacetime, the gµν are constant and thus by
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equation (15) the quantities Γβ
σα are all equal to zero. Therefore the

geodesic equations reduce to

d2xβ

dτ 2
= 0,

whose solutions correspond to straight lines in (x, y, z, t) Minkowski
spacetime.

In equations (17) we choose the parameter τ so that

(18) gµν

(

x1(τ0), x
2(τ0), x

3(τ0), (x
4(τ0)

) dxµ

dτ

∣

∣

∣

∣

τ0

dxν

dτ

∣

∣

∣

∣

τ0

= 1.

We refer to this choice of parameter as proper time. It can be shown
[H ughston and Tod, 1990] that if we choose the parametrization of a
geodesic so that equation (18) holds at τ = τ0, then

gµν

(

x1(τ), x2(τ), x3(τ), (x4(τ)
) dxµ

dτ

dxν

dτ
= 1

holds for all values of τ .
In this module we consider only the case where the orbiting particle

has non-zero mass. In the case of trajectories for light, we must instead
set the righthand side of equation (18) equal to zero.

4.4. Schwarzschild’s Exact Solution to Einstein’s Equations.

In 1916, Karl Schwarzschild discovered the first exact solution to Ein-
stein’s field equations Rµν = 0 for the gravitational field of a point
mass. In spherical coordinates [r φ θ t] where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π,
its metric is given by

(19) ds2 = −

(

r

r − 2M

)

dr2 − r2dφ2 − r2 sin2 φ dθ2 +

(

r − 2M

r

)

dt2.

See equation (13). For this form of the metric, physical units are chosen
so that G = 1 and c = 1, where G is the universal gravitational constant
and where c is the speed of light in the vacuum. In these units, mass
will have the units of length. To put this into perspective [H ughston
and Tod, 1990], the mass of our sun is about 3km.

Because of the spherical symmetry of the metric, it can be shown
that gravitational trajectories are confined to a plane. We assume that
the plane is the “equatorial plane” given by φ = π/2, and therefore the
term r2dφ2 on the right hand side of equation (19) drops out.

In order to find the gravitational trajectories for this solution, we
must compute the Christoffel symbols in equation (15) and then solve
the geodesic equations (17), where x1 = r, x2 = φ = π/2, x3 = θ,
and x4 = t. It turns out that we can reduce the problem to a single
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differential equation for r(θ). Moreover, if we carry out this program,
and make the substitution u = 1/r as we did in the Newtonian case in
section 4.1, we find that this single differential equation turns out to
be

(20)

(

du

dθ

)2

= A + 2pu − u2 + 2Mu3.

We therefore see that the Schwarzschild solution to Einstein’s field
equations provides a theoretical framework for equations (10) and (11),
and tells us how ε is related to the mass M . In equation (20), the

constant A is usually written as A = E2
−1

h2 where E is the energy of
the orbiting particle. In this way we see how the trajectory depends
on two physical quantities: energy E and angular momentum h.

4.5. Kerr’s Exact Solution to Einstein’s Equations. Another so-
lution to Einstein’s field equations Rµν = 0 was discovered in 1963 by
Roy Kerr, a New Z ealand mathematician. This solution describes the
gravitational field of a rotating mass. The Kerr metric, in what are
called Boyer-Lindquist coordinates, (r, φ, θ, t) is

(21)
ds2 = dt2 − 2Mrρ−2(dt − a sin2 φ dθ)2 − ρ2 (∆−1dr2 + dφ2)

−(r2 + a2) sin2 φ dθ2

In the above equation,

(22) ρ2 = r2 + a2 cos2 φ, ∆ = r2 − 2Mr + a2

The parameter a should be interpreted as the angular momentum per
unit mass of the rotating central body of mass M .

The interpretation of the Boyer-L indquist coordinates is not straight-
forward. It is certainly true that as r → ∞ , the Riemannian curvature
of the Kerr metric approaches zero, and so “at infinity” the Boyer-
L indquist coordinates can be thought of as spherical coordinates on
the Euclidean space that we get by setting t = constant. Notice that
if we let the angular momentum a be zero, this solution collapses to
the Schwarzschild solution– see equation (19). In terms of Minkowski
spacetime, with coordinates (x, y, z, t), we can think of the condition
r = const. as defining a family of nested spheres

(23) x2 + y2 + z2 = r2

that fill up the three-dimensional subspace that we get by setting t =
const. So in this sense, where we consider what happens when a = 0, we
again see that Boyer-L indquist coordinates act as spherical coordinates
for our spacetime.
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Figure 2. An oblate spheroid, which corresponds to a sur-
face of constant r, when a = 0 a nd r is o ne o f the B o y er-

L ind q u ist c o o rd ina tes.

On the other hand, if we set M to b e zero, then we fi nd that the
condition r = const. defi nes a fam ily of nested ob late sp heroids

(2 4 )
x2 + y2

r2 + a2
+

z2

r2
= 1 .

that fi ll u p the three-dim ensional su b sp ace defi ned b y t = const. A n
“ ob late sp heroid” is the su rface of rev olu tion that we g et b y rev olv ing
an ellip se arou nd its m inor ax is of sy m m etry . S ee F ig u re 2 . T o see
this, consider the following p aram eterization of the su rface defi ned b y
eq u ation (2 4 ):

(2 5 ) R(φ,θ) =
√

r2 + a2 cos θ sin φi +
√

r2 + a2 sin θ sin φj + r cos φk.

If we rep resent the m etric for this su rface as in [G ray , 1 9 9 8 ]

d s 2 = E d φ2 + 2 F d φd θ + G d θ2



COMPUTATIONAL ANALYSIS OF ORBITAL MOTION 11

then

(26 )

E =
∂R

∂φ
·∂R

∂φ

F =
∂R

∂θ
·∂R

∂φ

G =
∂R

∂θ
·∂R

∂θ
.

A straightforward calculation gives E = r2 + a2 cos2 φ, F = 0 and
G = (r2 + a2) sin2 φ. This is precisely what we get from equation (21)
when we put M = 0 , dt = 0 and dr = 0 . So in this sense, where we
consider what happens when M = 0 , we see that it might be better to
think of the B oyer-L indquist coordinates as acting as oblate-spheroidal
coordinates for our spacetime.

It is interesting to note that in equation (24), the condition r = 0
corresponds to a disk in the (x, y)-plane of radius a, and the condition
r = 0 , θ = π / 2 corresponds to the ring

(27 ) x2 + y2 = a2, z = 0

In equations (24) and (25), there is no reason to require r > 0 . In fact
when equation (21) is used to study rotating black holes, the B oyer-
L indquist coordinate r is allowed to be negative.

W e see that the K err metric is not spherically symmetric, it is only
axially symmetric. Thus unlik e orbital motion for N ewtonian physics
or for the Schwarzschild solution, gravitation trajectories for the Kerr

solu tion need not b e confi ned to a p lane. See Figure 3 .
For this reason we cannot in general expect to find a description of

geodesics that involves only one equation, such as equation (20 ) for the
Schwarzschild solution.

In order to find the gravitational trajectories for the K err solution,
we may proceed by computing the C hristoff el symbols in equation (15)
and then solve the geodesic equations (17 ), where x1 = r, x2 = φ,
x3 = θ, and x4 = t. It is possible [O’N eill, 1995; C handrasek har,
1998] to mak e a careful analysis of the solutions to equations (17 )
similar to the derivation of equation (20 ) from equations (17 ) for the
Schwarzschild solution. For the K err solution, the analysis is much
more delicate and the results are quite intricate. One k ey tool used
in this analysis [C arter, 196 8] is the remark able C arter C onstant K.
This quantity is a constant of motion for K err geodesics, similar to
the familiar quantities of energy E and axial component of angular
momentum h. See the discussion immediately following equation (20 ).
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Figure 3. A Kerr orbit with M = 1 , a = 0.8 , h = −0.8 ,
E = 1 , K = 1 4 .4 . T he trajectory sp irals into the oblate
sp heroid g iv en by equation (2 5 ) with r = 1 .6 , which is the
larg er of the two roots of ∆ . T he g rap h on the rig ht is the
v iew of trajectory when p rojected down from the z-ax is.

For orbits in the Schwarzschild solution, one constant of motion is that
the orbit is confined to a plane (φ = const). This constant of motion
not is present in the Kerr solution, but is effectively replaced by the
Carter constant. It turns out [Chandrasekhar, 1998] that the geodesic
equations (17) can be reduced to the following system of first-order
differential equations:

ρ4

(

dr

dτ

)2

= ((r2 + a2)E − ha)2 − ∆(r2 + K)(28)

ρ4

(

dφ

dτ

)2

= K − a2 cos2 φ − (aE sin φ − h csc φ)2(29)

ρ2
dθ

dτ
=

1

∆

(

2MaEr +
(ρ2 − 2Mr)h

sin2 φ

)

(30)

ρ2
dt

dτ
=

1

∆

( (

(r2 + a2)2 − ∆a2 sin2 φ
)

E − 2aMrh
)

(31)

R ecall that the quantities ρ = ρ(r, φ) and ∆ = ∆(r) are defined in
equation (22).

When plotting trajectories using these first-order differential equa-
tions, we can no longer specify initial conditions for r′(τ), φ′(τ), θ′(τ)



COMPUTATIONAL ANALYSIS OF ORBITAL MOTION 13

−4

0

3

2−2

1

2

−1

−2

0

Figure 4. An orbit in the Kerr equatorial plane. No-
tice how the clock wise/ counterclock wise sense of the motion
changes twice. F or this trajectory, M = 1, a =

√
0.84,

E = 1.5, h = aE and the transformation to polar coordi-
nates is based on equation (25) with φ = π / 2.

and t′(τ) as we must for the second-order system equations (17). We
instead specify values for h, E and K. It should be noted that r′(τ),
φ′(τ), θ′(τ) and t′(τ) are related by the condition that

gµν

dxµ

dτ

dxν

dτ
= 1

where x1(τ) = r(τ), etc. See equation (13). This explains why we only
need to specify three quantities h, E and K instead of four. By care-
fully choosing these parameters, we can plot trajectories using equa-
tions (28), (29) and (30).

If we put φ(0) = π/2 and K = (h − Ea)2, then from equation (29)
we obtain dφ/dτ = 0, and so these conditions on h, E, a, K will ensure
that the trajectory is confined to the equatorial plane. We can then
use equations (28) and (30) to plot trajectories in the equatorial plane.
See Figure 4 for an example.
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Equations (28) and (30) simplify further if we not only put φ(0) =
π/2 and K = (h − Ea)2, but also impose h = Ea. We then get

dr

dτ
= ±

√
E2r2 − ∆

r
(32)

dφ

dτ
= 0(33)

dθ

dτ
=

aE

∆
(34)

dt

dτ
=

E(r2 + a2)

∆
(35)
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5. Conceptual Questions

(1) D o some external reading to discuss contributions of Newton,
Riemann, Einstein, Schwarzschild, Kerr, etc. to orbital motion.
Two good places to start are [P ais, 1982] and [Spivak, 1979].

(2) In units used in this module, we set the speed of light c and
U niversal Gravitational constant G equal to 1. Explain why in
these units we can measure distance in terms of mass.

(3) Why is equation (8) the appropriate equation for a simple har-
monic oscillator?

(4) If we take M = 0 in equation (8), then what do we expect to
find as the trajectory? J ustify your conclusion.

(5) D escribe your trajectory in M inkowski spacetime if you are
standing still.

(6) The famous apple that fell on Newton’s head followed a straight
line trajectory. Explain how this trajectory is a special case of
equation (8).

(7) What would you expect to see happen to the Schwarzschild so-
lution as M → 0? M ake a prediction and carry out a calculation
to verify.

(8) A simple model of a curved space is a sphere. What would you
expect to find about its curvature? What non-Euclidean geo-
metrical properties would you expect geodesics on this surface
to show? What about a cylinder?

(9) What would you expect to see happen to the Kerr solution as
a → 0? M ake a prediction and carry out a calculation to verify.

(10) What would you expect to see happen to the Kerr solution as
M → 0? M ake a prediction and carry out a calculation to
verify.

(11) With reference to equation (31), explain in words why an ob-
server using Boyer Lindquist coordinates would observe that it
would take an infinite amount of time for the particle to reach
r = r2, where r2 is the larger root of ∆ = 0.

(12) With reference to equation (30), what happens to the angle θ
as the particle approaches r = r2?
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6. Problems and Projects

6.1. Symbolic and Numerical Solutions of Newtonian Equa-

tions of M otion.

(1) Use Maple to find an exact solution to the differential equa-
tion (8).
(a) Take p = 1, and plot some trajectories in the plane cor-

responding to various initial conditions u0 = u(0) and
D u0 = u′(0). Try to find initial conditions that result
in ellipses and hyperbolae.

(b) Depending upon the values of u0, D u0 and p, the trajectory
will be an ellipse, parabola, or hyperbola. Describe the
points in the (u0, D u0)-plane for which the trajectory is
an ellipse. Y ou may assume u0 > 0.

(2) Next use Maple to find a numerical representation of the solu-
tion to the differential equation (8). Using this representation,
plot elliptic, parabolic and hyperbolic trajectories.

6.2. Numerical Solutions of P ost-Newtonian Equations of M o-

tion.

(1) Use Maple to find a numerical representation of the solution to
the differential equation (10).

Use this representation to plot trajectories for the parameter
values shown in Figure (5).

p ε u(0) u′(0)

1 0 1 0.7
1 0.005 1 0.7
1 0.01 1 0.7
1 0.02 1 1
1 0.3 1 0.1

Figure 5 . Parameter values for trajectories in Section 6.2

(2) Go through the steps necessary to verify that equation (10) is
equivalent to equation (11).

(3) The classification of the trajectories for equation (10) can be ap-
proached by careful analysis [Chandrasekhar, 1998] of the roots
of the cubic polynomial on the right hand side of equation (11).
If we specify p, ε, u(0) and u′(0), then we can determine A.

Plot the resulting cubic function of u for values of the pa-
rameters in Figure (5). Choose a scale that clearly shows the
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positive roots. Indicate which part of the cubic curve corre-
sponds to the trajectory.

6.3. Maple Representation of Metric Properties.

6.3.1. Maple Representation of a Spacetime Metric. Use Maple to rep-
resent general coordinates X = [x1, x2, x3, x4], with a Maple Array, and
set up gµν as a symmetric matrix whose entries are arbitrary expres-
sions of x1, x2, x3, x4. Treat g as a Maple M atrix .

Illustrate your work by using it to set up a “perturbation” of the
Minkowski metric where gµν(x1, x2, x3, x4) is given by the matrix

(36)













−1 + ε x1 ε (x1 + x2) 0 0

ε (x1 + x2) −1 + ε x2 0 0

0 0 −1 + ε x3 0

0 0 0 1 + ε x4













.

6.3.2. C ompu tation of C h ristoff el Symbols. Write a Maple worksheet
that takes general expressions gµν(x

1, x2, x3, x4), and computes the
quantities Γ a

b c . See equation (15). Treat these quantities as a Maple
Array. Each entry of your Array should be a procedure representing a
function of (x1, x2, x3, x4). Use Maple to print the non-zero components
of your array when g is the perturbed Minkowski metric (36).

6.3.3. C ompu tation of th e Riemannian C u rvatu re. Write a Maple work-
sheet that takes general expressions gµν(x

1, x2, x3, x4), and computes
the quantities Rik lm of the Riemannian curvature tensor as well as the
quantities Rµν of the Ricci curvature tensor. See equations (14) and
(16). Treat Riemannian and Ricci curvature as Maple Arrays. Each
entry of an Array should be a procedure representing a function of
(x1, x2, x3, x4). Use Maple print the non-zero components of your ar-
rays when g is the perturbed Minkowski metric (36).

6.4. T h e Sch warzsch ild Solution.

6.4.1. Metric P roperties. Use your solutions to previous projects to
verify that the Schwarzschild metric has vanishing Ricci curvature.
The Schwarzschild metric can be represented in spherical coordinates
[r φ θ t] (0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π) as

(37) g =













− r
r−2 M

0 0 0

0 −r2 0 0

0 0 −r2 sin2(φ) 0

0 0 0 r−2 M
r













.
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See equation (19). Also, print the nonzero Christoffel symbols and
nonzero components of the Riemannian curvature.

6.4.2. Schwarzschild Trajectories.

(1) Set up the system of equations (17) in Maple and use DEplot
to plot the trajectory corresponding to the middle row of Fig-
ure (5). The solution is a parametric curve (r(τ), φ(τ), θ(τ), t(τ))
in spacetime, and to plot the curve [r(τ), θ(τ)] you can use DE-
plot with the option scene, together with transform to con-
vert the trajectory to a polar curve.
Assume φ(0) = 0 and φ′(0) = 0. This will confine the motion
to the equatorial plane.
You will need to work out M and the initial conditions

[R(0), R′(0), θ(0), θ′(0), t(0), t′(0)].

To do this, you will need to use the fact that M = 2ε, R = 1/u,
and equations (6), (9). Note: modify equation (6) to be

(38) r2
dθ

dτ
= h.

You will also need to use the following form of equation (18):

g11r
′(0)2 + g22φ

′(0)2 + g33θ
′(0)2 + g44t

′(0)2 = 1.

(2) Derive equation (20) from the system of equations (17). This
validates the post-Newtonian correction equation (10) and its
equivalent form equation (11). You may find the following out-
line useful.
(a) Generate the four geodesic equations with seq, and repre-

sent them as a list diff eqs.
(b) You should note that one of them is

d2φ

dτ 2
+

2

r

dφ

dτ

dr

dτ
− sin(φ) cos(φ)

(

dθ

dτ

)2

= 0

Notice that if φ(τ) = π/2, then this differential equation is
trivially satisfied. Physically this corresponds to the fact
that if a trajectory begins in the equatorial plane, then it
remains in this plane.
This suggests setting φ(τ) = π/2 with the syntax
>phi:= tau→ Pi/ 2 ;
Do so, and when you look at diff eqs you should see that
one of the equations drops out.
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(c) Next notice that two of three remaining differential equa-

tions (the ones involving d2t
dτ 2 and d2θ

dτ 2 ) can be reduced to

first order equations for dt
dτ

and dθ
dτ

by a substitution. Make
the appropriate substitution in each equation, and solve
the two differential equations. This will give you dt

dτ
and dθ

dτ

in terms of r(τ).
(d) Substitute these expressions into diffeqs for dt

dτ
and dθ

dτ
.

You should now find that diffeqs reduces to one differential
equation for r(τ).

(e) Use Maple to solve this differential equation. From the
resulting representation for the solution, you can easily see

how to get a formula for
(

dτ
dr

)2

.

(f) Using this expression for
(

dτ
dr

)2

in terms of r(τ) and the

expression from item (2c) above for
(

dθ
dτ

)2

, you can get an

expression for
(

dr
dθ

)2

.
(g) Finally make the substitution u(θ) = 1/r(θ) into the re-

sulting expression for
(

dr
dθ

)2

and clean up the result.

6.5. The K err Solution.

6.5.1. Metric Properties. Just as you did for the Schwarzschild metric,
verify that the Kerr metric has vanishing Ricci curvature. The ma-
trix representation of the Kerr metric in Boyer-Lindquist coordinates
[r φ θ t] is
(39)























−ρ2

∆
0 0 0

0 −ρ2 0 0

0 0 −
(

r2 + a2 +
2Mra2 sin2 φ

ρ2

)

sin2 φ
2Mra sin2 φ

ρ2

0 0
2Mra sin2 φ

ρ2
1 − 2Mr

ρ2























6.5.2. K err Trajectories.

(1) Set up the system of second-order geodesic differential equa-
tions (17) in Maple and use DEplot to plot the trajectory cor-
responding to the following initial conditions:
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r(0) = 2, r′(0) = −0.5291502622
φ(0) = π/2, φ′(0) = 0
θ(0) = −π/2, θ′(0) = −0.7637626155
t(0) = 0, t′(0) = −4.033333334

The four derivatives satisfy equation (18).
For this problem take M = 1 and a =

√
0.84.

The solution is a parametric curve (r(τ), φ(τ), θ(τ), t(τ)) in
spacetime that is confined to the plane φ = π/2 and spirals
into a circle whose radius is the larger root of ∆(r) = 0. See
equation (22).

To plot the curve [r(τ), θ(τ), φ(τ)] use DEplot3d with the
option scene, together with transform to convert the trajec-
tory to a polar curve. Take τ to be between 0 and 0.982.

Now plot the remaining inner trajectories. Use the initial
conditions provided below:

• For the trajectory between the two roots of ∆(r), namely
r = 0.6 and r = 1.4, use the following initial conditions:

r(0) = 1.39, r′(0) = −0.702914514
φ(0) = π/2, φ′(0) = 0
θ(0) = −π/2, θ′(0) = 81.21020225
t(0) = 0, t′(0) = 245.6290861

• Now, for the inner most trajectory, use the following initial
conditions:

r(0) = 0.59, r′(0) = −0.683177008
φ(0) = π/2, φ′(0) = 0
θ(0) = −π/2, θ′(0) = −79.20501206
t(0) = 0, t′(0) = −102.6752865

(2) Set up the system of first-order differential equations (28)– (30)
as functions of h, E,K and plot the orbit corresponding to h =
aE, E = 0.7 and K = 0. If you take φ0 = π/2, then these
conditions guarantee an orbit confined to the equatorial plane
φ = π/2.

You will need to do this in three plots. If r1 and r2 are the
roots of ∆ with r1 < r2, then you will need one plot for r > r2,
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another for r1 < r < r2 and yet another for r < r1. Set M = 1
and a =

√
0.84. To get started, take r(0) = 1.6.

(3) The initial conditions on r′(0), φ′(0) and θ′(0) in item (1) above
are synchronized with the values for h, E and K in item (2)
above. V erify this.

This partially validates the equivalence of the second-order
geodesic equations used in item (1) and the first-order system
in item (2).

(4) Use your setup of the system of equations (28)–(30) as functions
of h, E,K and plot Kerr orbits that are not confined to a plane.
You can begin with the parameters given in Figure 3. In that
figure, r(0) = 4.0, φ(0) = π/8, θ(0) = 0 and the range for τ is
from −4.5157703 to 0.
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Glossary: Computational Analysis of Orbital Motion

Boyer-Lindquist coordinates: Coordinates frequently used to
describe the Kerr solution. At spatial infinity in the Kerr space-
time, they behave like spherical coordinates for Euclidean space.
They were introduced about four years after Kerr’s initial dis-
covery of the Kerr metric.

C hristoffel symbols: When a spacetime has curvature, these
quantities allow us to define differentiation in a way that is
independent of the choice of coordinates. The Christoffel sym-
bols can be expressed in terms of the derivatives of the metric
components, and all of the important mathematical quantities
of a spacetime such as curvature and geodesic equations can be
expressed in terms of the Christoffel symbols. The Christoffel
symbols are a three-index system of quantities, but it is impor-
tant to note that they do not form a tensor.

constant of motion: When a particle moves along an orbit cer-
tain physical quantities are often conserved. In Newton’s classi-
cal theory of orbits, the most basic example is that a Newtonian
orbit (for central forces) is confined to a plane: the spherical co-
ordinate variable φ is constant. Another example is the angular
momentum h of the orbiting body. The energy of the particle
is also constant: as the orbiting body moves farther away from
the central force it slows down and so its kinetic energy de-
creases, but this is offset by a gain in potential energy. When
a second-order system such as equations (17) can be reduced
to a first-order system such as equations (29–31), typically the
initial conditions on the derivatives get replaced by constants
of motion.

Einstein’s fi eld equations: The system of partial differential
equations in General Relativity that equate the Ricci curvature
of the metric with the stress energy tensor. For empty space,
the stress energy tensor vanishes and the equations amount to
equating the Ricci curvature of the metric to zero. The field
equations are a system of ten coupled, nonlinear partial differ-
ential equations.

g eodesic: A generalization of the notion of the shortest distance
between two points in a curved space. Specifically, it is an
extremal point of the arc-length function between two points. In
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General Relativity geodesics maximize the separation between
two events.

Keplerian orbit: A classical gravitational trajectory that is a
conic section with one focu s at the central mass. K epler formu -
lated three empirical laws that describe the orbital motion of
planets. L ater N ewton u sed his theory of gravitation to give a
theoretical explanation for K epler’s L aws.

Kerr S olu tion: A metric describing the general relativistic grav-
itational fi eld of a rotating mass. T he solu tion is axial symmet-
ric and its Ricci cu rvatu re vanishes. It was discovered by Roy
K err in 1 9 6 3 .

L orentz m etric : T he metric that gives the separation between
two events in M ink owsk i space. It is given by ds2 = −(dx 2 +
dy 2 +dz 2) +dt2 in u nits where the speed of light is eq u al to one.
T he Riemannian cu rvatu re of the L orentz metric is zero.

m etric : A measu re of the infi nitesimal separation between two
points in a cu rved space. It is a generalization of the E u clidean
distance formu la.

M ink ow sk i spacetim e: T he spacetime that is the arena for spe-
cial relativity. M ink owsk i spacetime admits global coordinates
(x , y , z , t) where (x , y , z ) is a spatial location at t is a moment
in time. A n object (x , y , z , t) is called an event. T he L orentz
metric for M ink owsk i spacetime is given by ds2 = c2dt2 − dx 2

−

dy 2
−dz 2, where c is the speed of light. T his metric has vanish-

ing Riemannian cu rvatu re. M ink owsk i spacetime is the simplest
spacetime that models a u niverse with no gravitation. A gen-
eral cu rved spacetime has the property that the tangent space
at each point is a M ink owsk i spacetime.

O blate sph eroid al coord inates: A system of coordinates for
three-dimensional E u clidean space that generalizes spherical co-
ordinates. T he rou nd spheres become oblate spheroids, and the
cones φ = c of spherical coordinates become hyperboloids of
revolu tion. T his coordinate system is often u sed in geology and
atmospheric physics since the earth bu lges at the eq u ator, and
is thu s often modeled as an oblate spheroid.

perih elion: In N ewtonian mechanics, the minimal orbital dis-
tance of a planet from the su n.
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Post Newtonian Correction: A modification of Newtonian physics
that attempts to account for non-Newtonian anomalies as per-
turbations to Newtonian theory.

proper time: Time between two events, measured by a clock,
moving with an observer traveling from one event to the other
through spacetime.

R icci curv ature: A trace of the Riemannian curvature. The
field equations in a vacuum require that it vanish there. It
is convenient to think about it as a 4 × 4 matrix.

R iemannian curv ature: The mathematical object that quanti-
fies the curvature of a spacetime. It can be expressed in terms
of the derivatives of the coeffi cients of the metric. It is often
thought of as a four-index tensor. Although it has 2 5 6 com-
ponents, there are many symmetries amongst the indices, and
it turns out there are only 2 0 independent components. O ne
can think of the Ricci curvature as a trace of the Riemannian
curvature. Einstein’s field equations require that the Ricci cur-
vature of a spacetime to be zero, but this in no way forces the
Riemannian curvature to be zero.

R iemannian g eometry : The mathematics developed by Riemann
that describes geometry in an n-dimensional curved space. Rie-
mann was a student of Gauss, who laid the foundations for
Riemannian geometry by his work on the curvature of surfaces
in space. In Riemannian geometry, ds2, which measures the
separation between two infinitesimally separated points in the
curved space, is typically a positive definite quadratic form.
W hen the formalism of Riemannian geometry is applied to Gen-
eral Relativity, n = 4 and the quadratic form is no longer posi-
tive definite, but is indefinite with signature (1, 3).

Schwarzschild solution: A metric describing the general rela-
tivistic gravitational field of a point mass. The solution is spher-
ically symmetric and its Ricci curvature vanishes. It was the
first non-trivial exact solution to the field equations to be dis-
covered.

spacetime: A unification of the three spatial dimensions with
time. P oints in spacetime are called events. S pacetime is en-
dowed with a Lorentz metric that allows one to compute the
sep a ra tio n between events. This notion of separation between
events replaces the both the notion of distance between spatial
locations and the time between events. A spacetime might have
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nonzero curvature. Minkowski spacetime, the arena for special
relativity, has vanishing curvature. A spacetime whose Ricci
curvature equals zero is a spacetime that satisfies the Einstein
field equations.

special relativity: A theory that analyzes the separations be-
tween events in Minkowski spacetime. This theory was origi-
nally developed by Albert Einstein in 1905. It provides a model
of time dilation and length contraction at high relative speeds
in non-accelerating and non-gravitational reference frames.

spherical coordinates: A system of coordinates for Euclidean
space appropriate for situations involving spherical symmetry.
In this module, θ is the longitudinal angle that has a range of
2π, and φ is the co-latitudinal angle that has a range of π. The
equatorial plane is given by φ = π/ 2, and the positive z-axis
is given by φ = 0. In many textbooks and articles, especially
those written by physicists, the roles of θ and φ are reversed.
C are must be taken when reading the literature to understand
which convention is being used.

summation convention: In general relativity, physical quanti-
ties are often arrays that are denoted with index notation,
such as Rij, Ri

jkl, gij, or gij. If two such quantities are jux-
taposed with repeated indices, then it is understood that the
repeated indices are summed, especially if one of the matching
indices is u p and the other is dow n. F or example, AijBjk is
the quantity C i

k =
∑

j AijBjk. Warning: Dik + AijBjk means

Dik +
∑

j AijBjk and not
∑

j Dik + AijBjk.

U niversal Constant of G ravitation: The scaling factor for New-
tonian gravitational attraction. Its current experimental value
(as of 2002) is 6.67 42 × 10−11 m3 kg−1 s−2
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